13.4 Position, Velocity, Acceleration

If t = time and position is given by $r(t) = \langle x(t), y(t), z(t) \rangle$ then

$$r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$

$$= \frac{\text{change in position}}{\text{change in time}}$$

$$= \text{velocity} = v(t)$$

$$|\mathbf{r}'(t)| = \frac{\text{change in dist}}{\text{change in time}} = \text{speed}$$

$$r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$$

$$= \frac{\text{change in velocity}}{\text{change in time}}$$

$$= \text{acceleration} = a(t)$$

Example:

Let *t* be **time in seconds** and assume the position of an object (with components in **feet**) is given by

$$r(t) = \langle t, 2e^{-t}, 0 \rangle$$

Compute

1.
$$r'(t)$$
, $|r'(t)|$ and $r''(t)$.

$$2.\mathbf{r}'(0), |\mathbf{r}'(0)|$$
 and $\mathbf{r}''(0)$.

HUGE application: Modeling ANY motion problem.

Newton's 2^{nd} Law of Motion states Force = mass \cdot acceleration $m{F} = m \cdot m{a}$, so $m{a} = \frac{1}{m} \cdot m{F}$

If $F = \langle 0,0,0 \rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant.)

If $F \neq \langle 0,0,0 \rangle$, then acceleration will occur, and we integrate (or solve differential equations) to find velocity and position.

This is how we can model ALL motion problems!

Example:

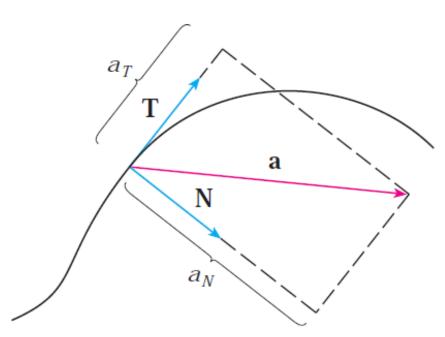
A ball with mass m = 0.8 kg is thrown northward into the air with initial speed of 30 m/sec at an angle of 30 degrees with the ground.

A west wind applies a steady force of 4 N on the ball (west to east). If you are standing on level ground, where does the ball land?

Steps (for *all* motion problems):

- 1. Forces?
- 2. Get acceleration.
- 3. Integrate to get $\vec{v}(t)$ (initial conditions?)
- 4. Integrate again to get $\vec{r}(t)$ (initial conditions?)

Measuring and describing acceleration



Recall: $comp_b(a) = \frac{a \cdot b}{b} = length$. We define the tangential and normal components of acceleration by:

 $a_T = \text{comp}_{\boldsymbol{T}}(\boldsymbol{a}) = \boldsymbol{a} \cdot \boldsymbol{T} = \text{tangential}$ $a_N = \text{comp}_{\boldsymbol{N}}(\boldsymbol{a}) = \boldsymbol{a} \cdot \boldsymbol{N} = \text{normal}$

Note that: $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$

Derivation of interpretation:

Let $v(t) = |\vec{v}(t)|$ = speed.

$$1.\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\vec{v}(t)}{v(t)} \text{ implies } \vec{v} = v\vec{T}.$$

$$2.\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{T}'|}{\nu(t)} \text{ implies } |\vec{T}'| = \kappa \nu.$$

$$3.\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{\vec{T}'}{\kappa \nu}$$
, implies $\vec{T}' = \kappa \nu \vec{N}$.

Differentiating the first fact above gives

$$\vec{a} = \vec{v}' = v'\vec{T} + v\vec{T}'$$
, so $\vec{a} = \vec{v}' = v'\vec{T} + kv^2\vec{N}$.

Conclusion

$$a_T = v' = \frac{d}{dt}|r'(t)| =$$
 "deriv. of speed"
 $a_N = kv^2 = \text{curvature} \cdot (\text{speed})^2$

For computational purposes, we use

$$a_T = \frac{\overrightarrow{r}' \cdot \overrightarrow{r}''}{|\overrightarrow{r}'|}$$
 and $a_T = \frac{|\overrightarrow{r}' \times \overrightarrow{r}''|}{|\overrightarrow{r}'|}$

Example:

 $\vec{r}(t) = <\cos(t)$, $\sin(t)$, t>

Find the tangential and normal components of acceleration.